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NEURAL NETWORKS

GRAPH PERCOLATION

BELLMAN EQUATION

STRUCTURE2VECTOR (S2V) [1]

• S2V allows for recurssive calls to a neural network to learn to embed 
 a graph in a N-dimensional space.
• The θs represent hidden layers.
• We account for factors based on node parameters (x), embedding of 
 neighbours, and link parameters (w).

Objective: To determine the capacity of neural nets to learn key features of networks, and how this capacity 
to learn changes as the percentage of network features concealed from the neural net is increased. 

Hypothesis: Machine learning will have the capacity to discover key network features at decreasing rates as 
more of network information is hidden from the neural network. [2] [3],    

•  Any link has equal probability of being 
 concealed. 
•  Edges are concealed until a required fraction 
 of the links are concealed.

•  Replace concealment heuristics with a Deep-Learning Agent 
•  Replace Q-Value Outputs with π-Value to allow for interpretting the output 
 as a probability of taking a given action instead of determining the best 
 action.

•  Conclusions motivate the concept that increased variance within the 
 supplied experiences in the training data might decrease performance of 
 deep learning equipped agents.

•  Network Concealment approaches yield trends in the relationship between 
 concealment percentage and percolation performance.

•  Percolation performance only ever approached the performance of random 
 actions when concealment percentages approached 100%.

•  Network Concealment Heuristics were largely similar in performance relative 
 to the random action baseline.

•  Increasing the stochastic measures taken during concealment during training 
 reduced neural network performance including:

  •  Providing uniformly random concealment percentage during training
   instead of constant concealment percentages.

  •  Concealing links with a probability proportional to the product of the 
   degrees that they connect.

•  Implications are that graphs cannot be defended from deep learning 
 equipped agents with rigid heuristics.

•  Neural networks are a parallel series of linear combinations, 
 neurons, applied in a series of layers.
•  Each linear combination has a non-linear function (ReLU) applied to it 
 before propagating the resulting value. [1][4]
•  Through updating the weights of the linear combinations, the neural net 
 can universaly approximate functions, transforming an input vector into 
 an output vector of desired dimensions. 

• Graph percolation is the process where selecting a node adds it and its 
 neighbour’s to a subset.
•  Red nodes indicates nodes selected, blue nodes indicate the percolated 
 nodes.
•  Nodes that have been chosen (red) cannot be chosen in subsequent 
 choices.
•  Percolation ends when the subset nodes make up a particular fraction of 
 the total graph. 

•  Links are ordered by the product of how many 
 incident links the nodes they join have. 
•  Edges are concealed with a probability of their
 link weight divided by the total link weight of 
 the entire graph.
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• Q is the expected return of rewards until the terminal state
•  r(s,a) is the reward for taking action, a, for the state, s. 
•  s’, a’ are subsequent state-action pairs.
•  β modulates priority on early vs late rewards. 
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THE NEURAL NETWORK TRIES TO PLAY THE 
ABOVE EXAMPLE WHEN ONLY PRESENTED THE 
FOLLOWING.

PERFORMANCE CHANGES WERE MEASURED.
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