
Network defense against adversarial, deep learning-
equipped agents

Jordan Lanctôt1, Sean P. Cornelius1,2,†

1 Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada

2 Center for Complex Network Research, Northeastern University, Boston, MA 02115, USA

† To whom correspondence should be addressed

A Thesis Submitted to the Department of Physics

In Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science (Honours) in Medical Physics at

Ryerson University

March, 2022

Author’s Declaration

I, Jordan Lanctot, hereby declare that I am the sole author of this thesis. This is a true copy

of the thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

I understand that my thesis may be made electronically available to the public.

Jordan Lanctot

April, 2022

Abstract

With the advent of Deep Learning, the security of infrastructure and information net-

works when attacked by smart, adversarial, Deep Learning agents comes into ques-

tion. Can information of the network be concealed with particular approaches or

heuristics to defend against these agents and obfuscate their ability to learn weakness

or key network features of a network or graph in question? In this paper, we deter-

mine the ability of neural networks to learn key network features under incremented

amounts of edge concealment and with a number of link concealment heuristics to

differently prioritize which links are concealed at a concealment fraction of the total

number of links in the networks trained upon. We show that under all of the ap-

proaches explored, uniformly random edge concealment, deterministic weighted edge

concealment, and stochastic weighted edge concealment, the adversarial agents are

able to percolate a given network much more efficiently than an approach of perco-

lation by random node selection with results decreasing relative to the concealment

fraction.

i

Acknowledgements

Science by its very nature is a feat which leverages past human experiences and

current creativity of a dedicated team to turn a very small piece of what we don’t know into

a learning shared by human kind; I was very fortunate to explore the unknown with band

of very supportive, and curious people.

Firstly, I would like to thank my supervisor, Dr. Sean P. Cornelius, for being a guiding

light through this process. I was afforded the opportunity to work in Dr. Cornelius’ lab over

a number of consecutive summers through my undergrad, as well as this process of a thesis

in machine learning. Sometimes in life the greatest gifts is to just give someone a chance,

and giving me the opportunity to creatively explore a number of diverse research projects

is something I will forever be grateful for. Through these experiences, Dr. Cornelius was

steadfast in his support while also pushing for excellence always just a bit farther than I

would have imagined I might have reached.

Secondly, I would like to thank the members of Dr. Cornelius’ lab: K. Mason Rock

and Xuixin Zhang. Not only did these graduate and post-doc level researchers always make

me feel welcome as a peer in the research environment, they were also diligently insightful

with their feedback and critiques while patiently allowing me to expand my understanding

through sometimes confusing and fantastical lines of inquiry.

ii

Additionally, I would like to thank my family and partner, Vanessa Henry, for their

unwavering support through the roller coaster of ride that this program has taken me

through. I’m sure that there were moments through this journey where they just placated

my frustrations of error tracing through a large code base with a simple nod and a question

about what broke things - ranting about the intricacies of policy gradients surely has no

emotional tag lines that could be found on the inside of Hallmark cards.

Finally, I would like to thank my friends and peers in the Medical Physics program.

Surely much of my drive to the finish line of this thesis was drawn from the shared misery

of our cohort battling the invisible enemy of looming deadlines. There is a comradery that

can be found in sharing dark moments before the dawn and they all played a supportive

role in these moments.

iii

Dedication

Many of us have had moments of time where we were stuck and content with things

as they are; mentorship can often be the wise person who pushes us from the nest precisely

at the moment they know we can fly. I would like to dedicate this paper to Dr. John G.

Freeman. Although Dr. Freeman is no longer with us, I know that the completion of this

work, and my undergrad, would have made him very proud.

One of Dr. Freeman last conversations with me was a gruff statement over a beer that

he would be disappointed if I was still working the same job in 5 years from that moment.

This statement wasn’t a statement about the job that had led to publishing an article with

him and a number of other professors; this was a statement about being content, and a

statement about exploring more of what there was in life. Few people support you - fewer

still push you from the nest.

Thank you Dr. John Freeman for the sincere guidance and for always pushing for

more in life. Without you I wouldn’t have started this journey. Rest in peace.

iv

Table of Contents

Page

Abstract . i

Acknowledgements . ii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Glossary . viii

1 Introduction . 1

1.1 Machine Learning . 1

1.1.1 Deep Learning . 2

1.1.2 Reinforcement Learning . 5

1.1.3 Deep-Q Learning . 6

1.2 Graphs . 10

1.2.1 Percolation . 11

1.2.2 Deep Learning on Graphs . 13

1.3 Computational Complexity Theory . 16

1.3.1 NP-Hard Problems . 16

v

2 Materials and Methods . 18

2.1 Introduction . 18

2.2 Algorithm . 19

2.3 Research Instruments . 21

2.4 Data Analysis . 22

3 Results . 23

3.1 Graph Generation Parameters . 23

3.2 Network Embedding Parameters . 23

3.3 Training and Testing Parameters . 24

3.4 Uniformly Random Edge Concealment . 25

3.5 Deterministic Weighted Edge Concealment 29

3.6 Stochastic Weighted Edge Concealment 30

3.7 Tabulated Performances . 31

4 Discussion and Conclusion . 33

4.1 Discussion . 33

4.2 Conclusion . 35

5 References . 36

vi

List of Figures

Page

1 Neural Network . 4

2 Deep Q-Learning . 9

3 Graph Percolation . 12

4 Performance of Random Edge Concealment (Many Models) 25

5 Performance of Random Edge Concealment (0 Model) 26

6 Performance of Random Edge Concealment (0.5 Model) 27

7 Performance of Random Edge Concealment (0-0.95 Model) 28

8 Deterministic Weighted Edge Concealment (0-0.95 model) 29

9 Stochastic Weighted Edge Concealment (0-0.95 model) 30

vii

List of Tables

Page

1 Glossary . viii

2 Graph Generation Parameters . 23

3 Graph Generation Parameters . 23

4 Training and Testing Parameters . 24

5 Performance of Random Edge Concealment 31

6 Performance of Random Edge Concealment 32

Glossary
Table 1: Common terms contained within this document.

Term Abbreviation Page

Deep Learning DL 2

Machine Learning ML 1

Neural Network NN 3

Non-deterministic Polynomial NP 2

Rectified Linear Unit ReLU 5

Reinforcement Learning RL 5

Structure2Vector S2V 13

viii

1 Introduction

1.1 Machine Learning

With the advent of Deep Learning (DL), a procedure within the field of Machine

Learning (ML), humanity has gained new tools to solve difficult, unsolved problems; al-

though this technology opens many new possibilities for solving complex, computational

tasks and large, macroscopic problems in physics, it also introduces subversive, destabiliz-

ing tools which might disrupt structural infrastructure in our daily lives. In the intersection

between complex networks, in physics, and DL, in computer science, there has been cutting

edge research to learn how to embed networks into a neural network framework suitable

for DL.1

The objective of this paper is to determine the capacity of Deep Neural Networks

to learn key features of networks, and determine the rate at which this capacity to learn

changes relative to the percentage of network features concealed from the neural net. DL

might have the capacity to discover key network features at decreasing rates as more of

network information is hidden from the neural network. If DL does exhibit this capacity,

this trend may also hold for networks of varying sizes and degree, and across many Non-

deterministic Polynomial-time hardness (NP-hard) problems that pertain to graph theory,

such as percolation,2, 3 maximum vertex coverage, and feedback vertex sets.

1

1.1.1 Deep Learning

One of the most intensely-researched subfield of ML within the past 15 years is DL.

DL leverages neural networks to learn how to use defined set of inputs through a series of

parallel linear algebra steps, with each step experiencing non-linear transformations, to re-

sult in contextually desirable outputs. Neural networks are conceptually modelled after the

human brain as an analogous example. The whole structure of a neural network is designed

to simulate how neurons in the brain use axons to discriminately attach to other neurons in

the brain resulting in modified signal flow in the brain. Just as changes in brain function

are based on physical or functional changes in this connecting structure of neurons, neural

networks are a series of parallel weighted sums with weights that can be updated to re-

flect a different transformational result to the incoming data. This analogous modelling of

the brain through linear combinations compounded with non-linear transformations has the

property that they act as universal approximators of functions ?; the compounding effects

of particular weights assigned to each of the linear combinations and a non-linear trans-

formation applied to each of the combinations results in a particular transformations of a

space of input vectors to a particular space of output vectors.

As the neural network interacts with the incoming data, ML approaches can be used

to modify the weights of the many weighted sums to modify the output and prioritize

the modifications of the weights to result in more consistently desirable resulting vectors.

Each weighted sums of the given input vector results in a value within the next layer of the

neural network. Each of these parallel summed values, analogous to the brain, are called

neurons. The number of parallel weighted sums performed determines how many neurons

2

will appear in the next layer and is itself a vector of values. In turn, each layer of neurons

can be treated as an input to which a number of parallel weighted sums can be applied

to result in the next consecutive layer. Each of the neuron’s have a non-linear activator

function applied to their result

This process repeats for the desired number of hidden layers, layers of neurons which

fall between the input and output of the neural network, and the final set of weighted sums

results in the output vector. Through this process of weighted sums, the weights each

previous neuron is linked to all the neurons at the next layer with varying degrees. As such,

the weights of the weighted sums simulate axon connections and the amount of signal sent

to other nearby neurons is modulated by these weights which are updated through ML to

result in the correct cascade of signal through the network.

3

Neural Network

Inputs Outputs

1 Neuron 1 Hidden
 Layer

Weighted
 Links

Figure 1: Schematic of a multi-layer, feed-forward neural network with three input variables, three hidden

layers with five input nodes each, and three output variables. The darker connections allow for visualizing

the fact that all values in a previous layer are propagated to all neurons in the following layer and each neuron

receives information from the previous layer. The difference in saturation of blue edges connecting to the

third hidden layer allows for visualizing that differences in the weights of these connections allow neurons to

have varying impact on neurons in the subsequent layer. Each neuron, calculates it’s value, the value that will

be passed by it to the next layer, as a function, φ , of a linear combination of the received inputs. This function

φ is a non-linear activation function converts the linear input to a non-linear output which can model the

capacity of neurons to be on or off depending on the threshold of the incident signal. Through this process of

non-linearity applied to a series of cascading linear combinations the neural networks can become universal

function approximators; That is to say, as the weights of the network are updated, for even a network of only

a handful of layers of dozens of nodes, the network begins to approximate a specific function which maps a

particular dimensional input to a particular dimensional output. The degree of this approximation is improved

with diminishing returns based on training parameters, such as training duration and reward structure, as well

as network structure, such as the number of hidden layers and number of nodes per layer.

4

Although there are many non-linear activation functions, the most widely-used is the

Rectified Linear Unit (ReLU), 1, 4 which is a continuous piece wise function that is zero

below a particular value and linear above that value. In this case, the linear combination,

x, results in a transformed result, ReLU(x), is the maximum of zero and the linear combi-

nation. This results in the property that a linear combination will not result the associated

neuron outputting a value for negative numbers and models the property that neurons in the

brain require an incident signal to exceed a certain threshold before they fire.

ReLU(x) = max{0,x} (1)

1.1.2 Reinforcement Learning

Reinforcement Learning (RL) is a branch of ML particularly suited to strategy games

with complete or incomplete information, such as Chess, Go, Poker, and StarCraft. 5–7 In

contrast to other machine learning tasks like facial recognition or handwriting recognition

8, 9, here one lacks ”ground truth” data on what is (or is not) a good move in a given state

of the game. Instead, such a strategy is learned de novo through rewards/penalties based

on the agent’s performance in the task at hand. The space of actions within the game

and associated states after a given action are known as action-state pairs. Through many

applications of the reward function to action-state pairs over many iterations of the game,

the neural network can have its weights updated in such a way that it maximizes the reward

function. Through the maximization of this reward structure, and the reactive nature of the

neural network, the neural network seeks to model optimal play.

5

1.1.3 Deep-Q Learning

Q-Learning is a mode of RL that seeks to learn a so-called Q-function, which predicts

the relative value of different actions in a game. Specifically, we imagine there is a function

Q(s,a) that–given a game state s and a prospective action a–calculates the total future

reward from taking that action in that state. If such a function can be learned, it follows

that the optimal strategy in state, s, is to take the action defined by:

F(s,a) = max{Q(s,a)} (2)

Q-values can be updated based on the Bellman Equation and use the state and action

to predict the cumulative expected rewards left in the game. This is because there is an

assumed boundary condition where when the terminal condition of the game is reached,

there are no further rewards that can be earned and Q(s′,a′) is equal to zero at this point.

Therefore, working backwards from the boundary condition, each previous step must be the

sum of the current Q-value and the reward achieved from the previous step. This process

elucidates the fact that the Q-values are a series converging to zero over the course of the

game, and this convergence allows the evaluation of the function retrospectively.

Q(s,a) = r(s,a)+ max
a′ ∈ Γ(x)

{
βQ(s′,a′)

}
(3)

The Bellman Equation returns the sum of expected rewards Q(s,a) from the current

state s until a terminal state by taking an action a and accounting for the set of possible

actions available based on the resulting state s′ (a′ ∈ Γ(x)). This maximum of the possible

6

sum of rewards can be expressed as the sum of the expected reward for taking action a on

the state s, r(s,a), and recursion of the Bellman Equation from the resulting state, s′, and

and following action, a′, Q(s′,a′) times a discount factor β . β takes on a value between

0 and 1 to represent how rewards can be skewed to more forthcoming or more latecoming

rewards in the series of actions taken to allow for more patient or more greedy optimizations

of the equation.

An additional value, ε , defines a particular number of times random actions should be

taken within training. In the early stages of training, we use ε = 1, allowing the approach to

with 100 percent of the actions taken being completely random actions; this allows explo-

ration of the action space and saving associated rewards to the action-state pairs to memory.

As the number of completed games increases (and Q becomes closer to the optimal pol-

icy), this value ε can be decreased to a target value over the course of training to reduce the

number of random actions, allowing for more actions based on optimal play based on past

experiences until the value approaches zero and the game is taking no exploratory moves.

This process of ever reducing exploration allows for discovery of possible methods of play

at the outset, but also allows training to coalesce towards actions that are chosen by the

DL with the successful past exploration acting as a bedrock for it’s current style of play.

As the limited memory of past play is replaced with more recent play, which is less and

less exploratory, the network moves towards actions that actions that are based on highly

rewarded actions it has perceived as optimal.

Implementation of replay memory, illustrated in Figure 2, allows for bifurcation of

7

two processes within the DL approach: the rollout phase and the training phase. Under the

sequential iteration of these two phases, training can be performed by sampling from the

replay memory with a finite cache size, then the roll out is performed and new set example

cases are passed through the updated neural network and the results are saved into the replay

memory. Through the repetition of this process, the system can preserve a set number

of previous experiences which are replaced with newer experiences over time – with the

oldest experiences in the replay memory being replaced by new incoming experiences.

This process is typically performed in batches where a particular number of experiences

drawn from the memory are presented to the neural network in parallel for the purpose of

updating the weights of the network. Then a batch of example states are presented to the

resulting network which yield experiences composed of linked actions, states, and rewards

that can be saved to the replay memory such that they might be sampled in the next round

of training. The term epoch is used to describe one iteration of a batch of training and a

number of epochs might be executed before performing the rollout phase.

8

Deep Q-Learning

State

Action

Random
Action

Reward

Q-Values

Taken ε
Fraction of the
Time

State

Reward

R
eplay M

em
ory

Figure 2: A neural network is trained to output Q-Values through and Epsilon-Greedy Approach by taking

less and less random moves as the training progresses. The actions, resulting states, and respective rewards

can intermittently be saved to replay memory with a limited buffer size during the rollout phase – a phase

after that follows the training phase. Sampling the replay memory can then be used as experiences in the

training phase to update the neural network weights to improved approximations of the Q-values – the rewards

expected from the game state assuming optimal play from that point on. Replay memory serves as a reservoir

of experiences to train upon, which preserves some past experiences as well as more recent ones. As the

training iterates over rolling out followed by training, the memory buffer is updated with new experiences

available to subsequent training and pushing out older experiences from the limited buffer of information.

9

1.2 Graphs

Graphs, sometimes called networks outside the context of neural networks, are a

computational structure consisting of nodes and links representing connections between

the nodes. These graphs can be used to represent real-world structures or the nature of

interactions between a set objects or entities, such as social networks, citation networks,

and the power grid.

Graphs are defined by sets of nodes and links or edges which join the nodes to make a

complex structure. We define the degree of node i as the number of connections (neighbors)

of that node, and denote it by the symbol ki. When classifying types of graphs related to

this research, there are a number of important parameters which quantify a given graph:

graph size (N) which is simply the number of nodes that are contained within the graph,

and the degree distribution, which is the probability distribution of the ki. In the case of this

work, we consider graphs characterized by two types of degree distributions: Poissonian–

modelling the situation where all nodes have a similar degree–and Power-Law–modelling

the case where there is large variability in the ki.

The Poissonian distribution is defined as:

P(k) =
λ−k

k!
e−λ (4)

Where λ is the mean value of the distribution and k is the degree.

The Power-Law distribution is defined as:

10

P(k) = ak−γ (5)

Where γ typically a value between 2.0 and 3.0 and a is a value greater than zero

which scales the distribution.

1.2.1 Percolation

Percolation, in the context of graphs, is way adding nodes to a subset of the graph

subsequently adds the links radiating from said node and all nodes they are incident upon to

the subset. As a consequence, adding particular nodes to the subset can change the rate at

which the subset grows due to the amount of radiating connections added, but adding par-

ticular nodes can also create connected components in the subset to be connected forming

a larger connected component in the subset. This property that certain nodes have more or

less impact on the rate at which a large subcomponent of the graph to appear in the chosen

subset, results is universal to all graphs and the relative impact of choosing particular nodes

are dependant on the graph structure at large. Due to the universality of this graph effect,

the study and understanding of this complex effect and its results on the structural level of

a given graph has resounding effects on many real-world structures such as the power-grid,

social networks, and food webs. Put simply, is there some process that can efficiently de-

termine the smallest set of nodes that can be removed to dismantle an entire graph? If so,

can this process be learned by neural networks in the presence of limited information about

the structure of the graph?

If the answer to the first proposed question is yes, then Deep-Q RL can leverage the

11

ability of the internal neural network’s ability to act as a universal function aproximator to

converge towards this efficient determination of the smallest set of nodes to dismantle the

graph. This would imply ML agents would be able to learn how to dismantle the real-world

graphs upon which our world is built. If the answer to the second proposed question is yes,

then it would result in a situation where the limitation of publicly accessible information

about these infrastructure graphs would not serve to protect the graphs in question from

malicious ML agents. Put simply, society would not be able to fortify infrastructure against

tactics designed to deliberately dismantle them.

Graph Percolation

Figure 3: An example graph with 8 nodes and 9 edges in which an example of graph percolation is performed.

Nodes are chosen from the graph and added to the percolated solution in such a way that chosen nodes cannot

be chosen again, but unchosen nodes, including those that have already been added to the solution, can still

be chosen for subsequent steps. Nodes connected to the chosen node as well as their links are also added

to the solution. Percolation is completed once the largest connected set of nodes in the percolation solution

exceeds a particular fraction of the total nodes in the whole graph. The red node in these graphics represent

the chosen node and blue nodes and links represent the percolation solution after that choice. Particular node

have a greater effect on the solution set based on the graph structure. For example, the last node added has the

largest resulting impact on the size of the largest connected component in the solution, going from a largest

connected component with the size of 3 nodes, to a largest connected component of size 8.

12

1.2.2 Deep Learning on Graphs

Graphs are complex in nature and the number of possible sets of links that could

connect a fixed number nodes scales rapidly with the number of nodes in the graph. There-

fore, the local interpretation of patterns within the fabric of the graph and global features

of the graph becomes challenging to represent in a small, finite set of dimensions as the

number of links and nodes scale. Being able to represent the graph’s structural features

within a small, finite set of features becomes important in order to pass these features to a

Neural Network (Figure 1), which expects a fixed size input. Research has been done to to

determine how to use Deep Q-Learning to learn how to perform graph embedding to as a

means to this end. Through the embedding approach of Structure2Vector (S2V), a graph’s

features can be learned to be embedded into a fixed dimension as the output neural graph.

1

µ
(t+1)
v ← ReLU(θ1xv +θ2 ∑

u∈N(v)
µ
(t)
v +θ3 ∑

u∈N(v)
ReLU(θ4w(u,v))) (6)

The p-dimensional embedding for each node v is completed recursively with the (t +

1)th iteration of the embedding depending on the tth iteration and is represented by µ
(t+1)
v .

Each of the contained θ functions within the recursive relationship represent the application

of a hidden layer of the neural network upon the respective incident input information.

As described in the Deep Learning section, a hidden layer is the propagation of parallel

linear of combinations of the input vector to a resulting vector, which is dependant on

the required dimensional embedding size p. Therefore, θ1,θ4 ∈ Rp and θ2,θ3 ∈ Rp×p to

preserve the ability to add the result of these transformation within the relationship under

13

vector and martix addition. The first term which has a layer of the neural network, θ1,

applied to it is the node parameters of the node v, xv. Secondly the embeddings of the

neighbouring nodes of v, u ∈ N(v), are summed as ∑u∈N(v) µ t
v and have the another neural

network transformation applied to them, θ2. Subsequently, the edge properties of the links

connecting a node v and its neighbours, u ∈ N(v), are transformed by θ4w(u,v). Lastly

the sum of the rectified and transformed edge properties, ∑u∈N(v)ReLU(θ4w(u,v)), have

the final transformation applied, θ3. The results of θ1, θ2, and θ3 are then summed and

rectified to result in the t +1 iteration of the embedding.

This fixed dimensional output representing an embedded graph can in turn be sup-

plied as the input for another neural network learning about percolation on the embedded

graph. That is to say the second neural network will learn to supply accurate Q-Values for

each node that indicate the total remaining rewards resulting from choosing that node as the

next action – assuming optimal choices. In the case of percolation, the rewards are based

upon the number of actions taken before a connected component of a particular fractional

size of the complete graph is realized in the subset. This means that the Q-Values will be

trained will converge to the number of moves that can be taken before the terminal case,

assuming optimal choices from that point on, should that node be added to the solution set.

In series, the sequence of these two neural networks can be treated as a singular neural net-

work which is holistically rewarded through the outcomes of the entire process with Deep

Q-Learning.

Past research has shown that treating the graph embedding and an associated NP-

14

Hard problem on the embedded graph as a singular problem, by way of a singular neural

network which achieves both these ends, has been successful.1 Past research has shown that

neural networks can be used to learn how to represent the complexity of a complex graph

structure in a finite set of dimensions in the order of a handful of dozens of dimensions. In

the example of graph percolation, the summed neural network sections can be more posi-

tively rewarded for taking more actions before the termination condition is met. Through

this reward structure, the optimization of the results of the neural network results in the

optimization of the graph embedding, the percolation actions, and the interplay between

the two is optimized as a whole pipeline. This results in the neural network optimizing it’s

ability to do all three previously mentioned optimizations. This is analogous to the idea

that an athlete can develop discrete skills within a given sport by practicing the sport at

large. This is because the practice of the macro-level skill contains the micro-level skills in

each training instance as well as opportunities to learn how the micro-level skills should be

combined effectively in the broader context.

The solution of this problem is the inverse of the dismantling problem. That is to

say, determining whether a graph can learn to take as many moves as possible before a

connected component of a particular fraction of the graph is resolved, is the diametrically

opposed strategy of taking the minimum moves possible before a component of a particular

fraction of the graph is resolved. The set of moves that results in the smallest set of moves

taken before termination are the structural weaknesses to a given graph as it pertains to

percolation and cascading graph failures.

15

1.3 Computational Complexity Theory

1.3.1 NP-Hard Problems

Many NP-Hard problems described within computation can be described as pro-

cesses performed upon graphs with a particular end result, and as such it becomes important

to understand graph dynamics can be modelled to solve these computationally expensive

problems. One of these such problems is the problem of percolation.

In computer science, algorithms are often classified by the how the time it takes for

the algorithm to determine a solution and how the time it takes for a solution to be verified

both scale as the size of the given parameters scale. A particular class of problems that

are of great importance to the field are the set of Non-deterministic Polynomial (NP) time

problems. These problems are problems who’s algorithms whose time complexity scales

with a greater than polynomial relationship with the parameter size. Additionally these are

problems who’s verification of the solution scales with less than a polynomial relationship

with the parameter size. Therefore these problems are exceedingly difficult to solve but

relatively simple to evaluate if a solution is correct. A problem is deemed NP-Hard if it has

been determined to have a time complexity at least as great as an NP problem.

Many of the NP-Hard problems end up being problems related to graph theory due to

how the complexity structures within graphs scale an inordinate amount relative the amount

of nodes that they consist of. NP-Hard problems include: the Vertex cover problem, the

travelling salesman problem, the Hamiltonian path problem, subset sum problem, the graph

colouring problem, and many more. As an example, the graph colouring problem is a

16

problem which, given a particular graph, one is to determine what is the minimum number

of colours that could be use to colour the nodes in such a way that no two nodes attached

by a link share the same colour. This problem was first conceived by map makers trying

to determine the minimum number of colours to colour in a map without neighbouring

countries having the same colour. As such, the problem can be represented with a graph

whose nodes are the countries and the countries that are adjacent are connected by a link.

This problem is also the underlying problem upon which Sudoku is built where colours in

the form of 9 unique numbers must be placed within a lattice where squares represent the

nodes and the nodes are connected to all of the squares in their row, column, and nine by

nine nonile of the lattice. Describing this problem and the implied difficulty associated with

solving these problems serves to describe how challenging these type of problems are.

17

2 Materials and Methods

2.1 Introduction

Graph embedding was performed by capturing important graph features and trans-

forming the structure of the data such that it can be supplied to conventional Deep Learn-

ing algorithms, which expect tensor data of a fixed dimension as an input 1. Then, deep

Q-learning with a greedy approach was executed on the embedded graph, whereby the

machine learning problem will make choices which balance greedy actions, actions which

maximize a certain reward parameter, with increasingly less exploratory actions throughout

the learning progresses 10. Rewards for the actions taken by the neural network were cal-

culated at the completion of each attempt at the problem to ensure that the process allows

for delayed rewards, which prioritize end results as opposed to near term success.

Therefore, each graph problem was defined by taking particular actions on a set of

nodes which add or subtract features associated with an embedded graph until an action

yields a graph state defined by the problem at hand, ending the process. The number of

actions performed before this condition is met can be deemed either a positive reward or

negative reward to the neural network, incentivizing or disincentivizing a particular result.

The rewards were stored, relative to the respective actions taken by the neural net, to be used

as memory for the following attempts by the neural network during training. Increasingly

more reward-based actions were taken, thereby incentivizes a particular type of result over

the completion of millions of embedded graphs with similar graph features.

Using this approach, it was determined whether the deep learning of particular graph

18

features, on graphs that are similar to real-world analogues, can be thwarted through the oc-

clusion of information to the deep learning process. For the NP-hard problem in question,

percolation, it was determined if the agent’s ability to choose an optimal set of actions dete-

riorates as more and more information is withheld. If Deep Learning cannot be impacted in

a meaningful way, through the partial concealment of graph information, this suggests that

Deep Learning might be applied to real-world infrastructure networks to determine weak

points of the graph regardless of if some of the graph information is hidden to attempt to

prevent such attacks 11–13.

2.2 Algorithm

Graphs were generated for the purpose of training and testing with an equal like-

lihood of being a Power Law degree distribution or a Poisson degree distribution. Graph

concealment was performed through the use of three different approaches within this re-

search: uniformly random edge concealment, deterministic edge-weighted concealment,

and stochastic edge-weighted concealment. For the uniformly random edge concealment,

edges of the graphs contained in the training and validation data were concealed at ran-

dom until the fraction of edges concealed by the graph was greater or equal to the number

of fractions to be concealed by the graph. For deterministic edge-weighted concealment,

edges were rank ordered by the product of the degree of the nodes at either end of the edge

and concealed from the greatest product and decreasing until the fraction of edges con-

cealed by the graph was greater or equal to the number of fractions to be concealed by the

graph. For stochastic edge-weighted concealment, edges were given a value equal to the

product of the degree of the nodes at either end of the edge and concealed with probabilities

19

weighted by product to until the fraction of edges concealed by the graph was greater or

equal to the number of fractions to be concealed by the graph.

Training of distinct neural networks were performed at 0.05 fractional intervals for

the concealment fraction ranging from 0 to 1.0 for the three concealment methods for fixed

ranges of graph parameters. The process was repeated for at a number of distinct graph

size ranges beginning at 25-30 node graphs up to 200-300 node graphs.

The resulting neural networks were tested on a batch of graphs with their corre-

sponding respective graph properties for the entire concealing fraction range. The average

fractional number of moves until the percolation threshold was met were plotted against

their respective concealing fraction for each of the three methods for all of the trained

graph ranges. The resulting plots were compared by comparing the area under their respec-

tive curves and the standard deviation of their step-wise slopes. These two results were

used to determine the marginal and overall effectiveness of the edge concealment, with

smaller areas indicating less capacity for neural networks to learn graph features under a

given concealment and standard deviations indicating a larger difference in the marginal

effectiveness across the fractional concealment range.

Additionally, the same methodology for training a singular neural network exposed

to no graph concealment at the various graph ranges. This singular neural network was then

tested at the the various increments of fractional concealment and the same plots for each

of the concealment methodologies at each of the graph ranges were generated to determine

if neural networks trained with no concealment had similar capacity to their counterparts

20

trained at specific concealment fractions. This process was similarly repeated for singular

neural networks trained at exclusively 0.5 fractional concealment for their respective con-

cealment methodologies and for singular neural networks exposed to graphs with uniformly

random concealment fractions.

2.3 Research Instruments

All neural network training and testing was performed on a NVIDIA TITAN XP

graphics card using Pytorch, a Python based deep learning library which allows for im-

plementations of the Deep Learning concepts described in the algorithm. The maximum

size of the neural networks trained and tested upon were constrained by the by the amount

of on-board RAM for the given graphics card; given that testing required storing a large

set of graphs of a particular size range to ensure that different concealment fractions were

tested upon the same set of graphs and some memory had to be allocated to processes on

the GPU, 1000 graphs of 200-300 nodes was the upper threshold for the 12 GB of RAM

on this card.

21

2.4 Data Analysis

Performance of a given approach over the entire fractional concealment range was

determined by finding the area under the curve that was above the average performance of

taking random actions in the context of the graph percolation. Through this measure, it was

possible to compare performance of the various approaches as well as how the conceal-

ment approaches scaled with the size of the graphs presented. Additionally, the standard

deviation of the stepwise slopes of the performance curves were determined as another

metric for describing the variation in performance of a given approach over the fractional

concealment range.

22

3 Results

3.1 Graph Generation Parameters

Table 2: Graphs were generated with equal likelihood of having a Power Law degree distribution or Poisson

degree distribution. The average degrees of the generated graphs were uniformly distributed between 2.0 and

6.0 and the degree exponents for the Power Law graphs were uniformly distributed between 2.0 and 3.0.

Parameter Value

Power Law Graph Likelihood 50%

Poisson Graph Likelihood 50%

⟨k⟩ 2.0 - 6.0

γ 2.0 - 3.0

3.2 Network Embedding Parameters

Table 3: Network embedding with the S2V methodology was performed with 5 hidden layers (depth) and an

output vector of size 64 (Embedded Dimensions).

Parameter Value

Depth 5

Embedded Dimensions 64

23

3.3 Training and Testing Parameters

Table 4: Training and testing parameters for Deep-Q Reinforcement Learning. Epochs are defined as the

number of passes over the training portion of the Deep-Q Reinforcement algorithm, and in this case was

training upon 35,000 experiences from replay memory and subsequent updating of the neural network weights

over the course of the complete training. Additionally, the process of updating neural network weights was

performed every 100 graphs (Training Frequency(, and rolling out was performed after every training set

of 100 experiences (Rollout Frequency). Rolling out consisted of presenting 100 new graphs to the updated

neural network and saving those experiences to replay memory of 100,000 experiences. Epsilon is the fraction

of actions that will be taken as random actions. The learning rate is a weighting which determines how much

individual outcomes should update the neural network relative to maintaining the weightings obtained from

the sum of many previous iterations. Test set size is the number of graphs that the generated neural networks

are tested on to generate the quantitative results contained in the results section. Finally, the percolation was

performed until the largest connected graph in the percolated set grew to at least 20% of the total graph in

question, both for training and testing.

Parameter Value Parameter Value

Epochs 35,000 Replay Capacity 100,000

Starting Epsilon 0.3 Ending Epsilon 0.05

Rollout Frequency 100 Training Frequency 100

Percolation Threshold 20% Learning Rate 0.0001

Test Set Size 1,000

24

3.4 Uniformly Random Edge Concealment

0 20 40 60 80 100
Fog Percentage

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 N
um

be
r o

f S
te

ps

(Neural Network per Concealment Percentage)

Perc=20, Size=15-20
Perc=20, Size=30-50
Perc=20, Size=50-100
Perc=20, Size=100-200
Perc=20, Size=200-300
Perc=20, Random Actions

Performance for Random Edge Concealment

Figure 4: Percolation for random edge concealment at various percentages of edge concealment trained with

a unique model for each 5% increment of concealment with a percolation threshold of 20%. Results reflect

the average number of actions taken as a fraction of the total possible number of nodes in a graph over 1000

graphs for the particular neural network corresponding to the concealment percentage in question. The red

baseline indicate the average performance achieve by taking random actions over 1000 graphs. Note that the

performance for sizes 200-300 contained neural networks, which were generated in increments of 25% of

percentage concealment, ranging from 0 to 100% was due to time constraints (both ends inclusive).

25

0 20 40 60 80 100
Fog Percentage

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 N
um

be
r o

f S
te

ps

(0 Concealment Percentage Neural Network)

Perc=20, Size=15-20
Perc=20, Size=30-50
Perc=20, Size=50-100
Perc=20, Size=100-200
Perc=20, Size=200-300
Perc=20, Random Actions

Performance for Random Edge Concealment

Figure 5: Similar to results for figure 4 but plotting percolation for random edge concealment at various

percentages of edge concealment trained with a single model for at 0% concealment.

26

0 20 40 60 80 100
Fog Percentage

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 N
um

be
r o

f S
te

ps

(50.0 Concealment Percentage Neural Network)

Perc=20, Size=15-20
Perc=20, Size=30-50
Perc=20, Size=50-100
Perc=20, Size=100-200
Perc=20, Size=200-300
Perc=20, Random Actions

Performance for Random Edge Concealment

Figure 6: Similar to results for figure 4 but plotting percolation for random edge concealment at various

percentages of edge concealment trained with a single model for at 50% concealment.

27

0 20 40 60 80 100
Fog Percentage

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 N
um

be
r o

f S
te

ps

(0-0.95 Concealment Percentage Neural Network)

Perc=20, Size=15-20
Perc=20, Size=30-50
Perc=20, Size=50-100
Perc=20, Size=100-200
Perc=20, Size=200-300
Perc=20, Random Actions

Performance for Random Edge Concealment

Figure 7: Similar to results for figure 4 but plotting percolation for random edge concealment at various

percentages of edge concealment trained with a single model with concealment uniformly varied between 0

and 95%.

28

3.5 Deterministic Weighted Edge Concealment

0 20 40 60 80 100
Fog Percentage

0.3

0.4

0.5

0.6

0.7

0.8
N

or
m

al
iz

ed
 N

um
be

r o
f S

te
ps

(0-0.95 Concealment Percentage Neural Network)

Perc=20, Size=15-20
Perc=20, Size=30-50
Perc=20, Size=50-100
Perc=20, Size=100-200
Perc=20, Size=200-300
Perc=20, Random Actions

Performance for Deterministic Edge Concealment

Figure 8: Similar to results for figure 4 but plotting percolation for deterministic weighted edge concealment

at various percentages of edge concealment trained with a single model with concealment uniformly varied

between 0 and 95%

29

3.6 Stochastic Weighted Edge Concealment

0 20 40 60 80 100
Fog Percentage

0.3

0.4

0.5

0.6

0.7

0.8
N

or
m

al
iz

ed
 N

um
be

r o
f S

te
ps

(0-0.95 Concealment Percentage Neural Network)

Perc=20, Size=15-20
Perc=20, Size=30-50
Perc=20, Size=50-100
Perc=20, Size=100-200
Perc=20, Size=200-300
Perc=20, Random Actions

Performance for Stochastic Edge Concealment

Figure 9: Similar to results for figure 4 but plotting percolation for stochastic weighted edge concealment at

various percentages of edge concealment trained with a single model for at 50% concealment.

30

3.7 Tabulated Performances

Table 5: Effectiveness of random edge concealment on Deep-Q learning of graph percolation on graphs of

various sizes. The four cases displayed for a given graph size range correspond to: unique neural networks

trained and tested at each increment of fractional edge concealment, a single neural network trained on a

single concealment fraction of 0 and tested at each increment of fractional edge concealment, a single neural

network trained on a single concealment fraction of 0.5 and tested at each increment of fractional edge

concealment, and a single neural network trained with exposure to uniformly random concealment fractions

between 0 and 0.95 on a per graph basis and tested at each increment of fractional edge concealment. The

concealment method for concealing the links was a random approach where all links had an equal chance of

being concealed up to the desired concealment fraction. This process was repeated for each of the tabulated

graph sizes.

∗ Area calculated with stepwise slopes at 25% concealment percentages due to time constraints discussed in

Figure 4.

Network Size Area (All Models) Area (0.0 Model) Area (0.5 Model) Area (0-0.95 Model)

15-20 0.13275 0.12930 0.14490 0.14508

30-50 0.18738 0.17184 0.17193 0.18667

50-100 0.18663 0.20129 0.19666 0.19311

100-200 0.20822 0.12452 0.19526 0.12469

200-300 0.20805 ∗ 0.18448 0.20636 0.09451

31

Table 6: Effectiveness of random edge concealment on Deep-Q learning of graph percolation on graphs of

various sizes. The three cases displayed for a given graph size range correspond to a single neural network

trained with exposure to uniformly random concealment fractions between 0 and 0.95 on a per graph basis

and tested at each increment of fractional edge concealment. In the three presented approaches, the results

corresponded to the following approaches for link concealment: equal weighting edge concealment (similar

to the previous table’s results), weighted edge concealment with a deterministic approach, and weighted edge

concealment with a stochastic approach. The key difference between the latter two concealment approaches

is that the deterministic approach represents concealing the links with the greatest product of the degree of the

nodes they connect until the concealment fraction is reached, whereas the stochastic approach conceals the

links probabilisticly at by their degree weight product relative to the sum of all degree weights. This process

was repeated for each of the tabulated graph sizes.

Network Size Area (0-0.95 Model) Area (Deterministic) Area (Stochastic)

15-20 0.14508 0.17626 0.10443

30-50 0.18667 0.20822 0.14615

50-100 0.19311 0.18237 0.16311

100-200 0.12469 0.12756 0.16515

200-300 0.09451 0.21049 0.16452

32

4 Discussion and Conclusion

4.1 Discussion

It was determined that neural networks trained with varying percentages of the net-

work connections visible to the network resulted in an appreciable change in the perfor-

mance of the models for a series of test cases. In most cases, the fractional edge conceal-

ment of networks yielded a linear reduction in the percentage of steps taken before exceed-

ing the percolation threshold of 20% of the nodes in the percolated set. Training unique

neural networks at discrete concealment fractions had little to no improvement relative to

training a single network with a fixed concealment fraction. In the case of modelling the

entire fractional concealment spectrum with a singular neural net, it was determined that

exposing the network to a uniform distribution of concealment fractions between 0 and 0.95

during the training period was relatively ineffective at reducing neural network learning, de-

spite the added variability in the information provided during the training. This suggested

that even when adding another stochastic measure to the training, a perhaps desirable addi-

tional heuristic for network concealment, the neural network was able to perform at similar

performance levels as the the less varied training environment of fixed percentage conceal-

ment training. The linear trend found in the relationship between edge concealment and

fraction of nodes added before a percolation threshold was met suggests near full network

concealment is required to approach results comparable to a random agent.

33

This research also determined that capacity to learn percolation on networks was

remained consistent, in terms of resulting area, regardless of the network size that the net-

works were trained and test upon. This finding implies that the neural networks have the

capacity to learn network features irrespective of network size, and some preliminary anal-

ysis found that neural networks trained on smaller network sizes were relatively effective at

producing similar test results on larger network sizes, relative to their counterparts trained

on larger networks. This finding echos results determined by Dai et al.1

The most effective heuristic for reducing the capacity for learning by neural net-

works was taking a stochastic edge concealment method where edges were concealed at

a rate proportional to the product of the degree of the nodes they spanned. It was deter-

mined that, although this method reduced the learning capacity for low concealment frac-

tions compared to the deterministic version of the heuristic and the uniform random edge

concealment heuristic, all heuristics had similar capacity for learning the higher fractional

concealment regions. This suggests that the chosen heuristic is only effective for use cases

where capacity to conceal the network is extremely limited.

34

4.2 Conclusion

Due to the concealment approaches having little marginal benefits in reducing the

effectiveness of the adversarial agents’ ability to learn key network features, relative to the

baseline of random action performance, implies that capacity to defend graph structures

from such attacks might not be feasible with concealment approaches such as the ones

discussed in this paper. This results has applications in preventing malicious datamining,

targeted attacks, and nonlinear dynamics on networks if further research cannot determine

a concealment approach which might obfuscate adversarial learning in this context. Future

exploration could include training a second neural network to learn to effectively conceal

links presented to the network performing percolation. Through this approach it could be

determined if there is any effective heuristic to thwart the percolating neural network.

35

5 References

1. Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial opti-

mization algorithms over graphs. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, 6351–6361 (Curran Associates

Inc.).

2. Bennett, H., Reichman, D. & Shinkar, I. On percolation and NP-hardness 54, 228–257.

URL https://onlinelibrary.wiley.com/doi/10.1002/rsa.20772.

3. Morone, F. & Makse, H. A. Influence maximization in complex networks through

optimal percolation 524, 65–68. URL http://arxiv.org/abs/1506.08326. 1506.

08326.

4. Agarap, A. F. Deep learning using rectified linear units (ReLU) URL https://arxiv.

org/abs/1803.08375v2.

5. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi,

and go through self-play 362, 1140–1144. URL https://www.science.org/doi/

abs/10.1126/science.aar6404. Publisher: American Association for the Advance-

ment of Science.

6. Moravčı́k, M. et al. DeepStack: Expert-level artificial intelligence in heads-up no-

limit poker 356, 508–513. URL https://www.science.org/doi/abs/10.1126/

science.aam6960. Publisher: American Association for the Advancement of Sci-

ence.

36

https://onlinelibrary.wiley.com/doi/10.1002/rsa.20772
http://arxiv.org/abs/1506.08326
1506.08326
1506.08326
https://arxiv.org/abs/1803.08375v2
https://arxiv.org/abs/1803.08375v2
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aam6960
https://www.science.org/doi/abs/10.1126/science.aam6960

7. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent rein-

forcement learning 575, 350–354. URL https://www.nature.com/articles/

s41586-019-1724-z. Number: 7782 Publisher: Nature Publishing Group.

8. Dutta, K., Krishnan, P., Mathew, M. & Jawahar, C. Improving CNN-RNN hybrid net-

works for handwriting recognition. In 2018 16th International Conference on Frontiers

in Handwriting Recognition (ICFHR), 80–85.

9. Balaban, S. Deep learning and face recognition: the state of the

art. In Biometric and Surveillance Technology for Human and Activ-

ity Identification XII, vol. 9457, 68–75 (SPIE). URL https://www.

spiedigitallibrary.org/conference-proceedings-of-spie/9457/94570B/

Deep-learning-and-face-recognition--the-state-of-the/10.1117/12.

2181526.full.

10. Mnih, V. et al. Playing atari with deep reinforcement learning .

11. Ren, X.-L., Gleinig, N., Helbing, D. & Antulov-Fantulin, N. Generalized network

dismantling 116, 6554–6559. URL https://pnas.org/doi/full/10.1073/pnas.

1806108116.

12. Grassia, M., De Domenico, M. & Mangioni, G. Machine learning dismantling and

early-warning signals of disintegration in complex systems 12.

13. Albert, R., Jeong, H. & Barabasi, A.-L. Error and attack tolerance of complex networks

406.

37

https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9457/94570B/Deep-learning-and-face-recognition--the-state-of-the/10.1117/12.2181526.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9457/94570B/Deep-learning-and-face-recognition--the-state-of-the/10.1117/12.2181526.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9457/94570B/Deep-learning-and-face-recognition--the-state-of-the/10.1117/12.2181526.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9457/94570B/Deep-learning-and-face-recognition--the-state-of-the/10.1117/12.2181526.full
https://pnas.org/doi/full/10.1073/pnas.1806108116
https://pnas.org/doi/full/10.1073/pnas.1806108116

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Machine Learning
	Deep Learning
	Reinforcement Learning
	Deep-Q Learning

	Graphs
	Percolation
	Deep Learning on Graphs

	Computational Complexity Theory
	NP-Hard Problems

	Materials and Methods
	Introduction
	Algorithm
	Research Instruments
	Data Analysis

	Results
	Graph Generation Parameters
	Network Embedding Parameters
	Training and Testing Parameters
	Uniformly Random Edge Concealment
	Deterministic Weighted Edge Concealment
	Stochastic Weighted Edge Concealment
	Tabulated Performances

	Discussion and Conclusion
	Discussion
	Conclusion

	References

